Synthesis of O-Glycosides of Heteroatom Aroyl-Substituted Heterocyclic Ketene Aminals

Qiang YANG, Zhan Jiang LI, Zhi Tang HUANG*
Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100080

Abstract

Heteroatom aroyl-substituted heterocyclic ketene aminals $\mathbf{1}$ reacted with 2,3,4,6-tetra-O-acetyl- α-D-glucopyranosyl bromide 2 under the catalysis of $\mathrm{Hg}(\mathrm{CN})_{2}$ or CaH_{2} to give E - or Z - Oglycosides of heterocyclic ketene aminals $\mathbf{3}$ or $\mathbf{4}$ in moderate yields.

Keywords: Synthesis, heterocyclic ketene aminals, O-glycosides.

As we know, carbohydrates play an important role in nature, especially as recognition determinant in host-pathogen interactions or in cell-cell interactions. Therefore, stereocontrolled glucosylation has become one of the important topics in organic synthesis ${ }^{1,2}$.

Heterocyclic ketene aminals are important intermediates for the synthesis of a wide variety of new heterocycles and fused heterocycles, some of which have high biological activity ${ }^{3}$. It has been reported that benzoyl-substituted heterocyclic ketene aminals can react with 2 using mercuric cyanide as catalyst to give E-configuration O-glycosided heterocyclic ketene aminals ${ }^{4} ; E$ - or Z-configuration O-galactosides of heterocyclic ketene aminals were yielded when heterocyclic ketene aminals reacted with 2,3,4,6-tetra-O-acetyl- α-D-galactopyranosyl bromide under the catalysis of $\mathrm{Hg}(\mathrm{CN})_{2}$ or CaH_{2}, respectively ${ }^{5}$. Here, we wish to report the reaction of heteroatom aroyl-substituted heterocyclic ketene aminals $\mathbf{1}$ with $\mathbf{2}$ under the catalysis of $\mathrm{Hg}(\mathrm{CN})_{2}$ or CaH_{2}.

Heterocyclic ketene aminals $\mathbf{1}$ were prepared by the reaction of 1,3-diaminopropane and α-oxo ketene dithiacetals ${ }^{6}$. $\mathbf{1}$ reacted with 2,3,4,6-tetra-O-acetyl- α-Dglucopyranosyl bromide $\mathbf{2}$ in the presence of $\mathrm{Hg}(\mathrm{CN})_{2}$ to give the products $\mathbf{3}$ in moderate yields. However, when $\mathbf{1}$ and $\mathbf{2}$ reacted under the catalysis of $\mathrm{CaH}_{2}, \mathbf{4}$ were yielded. The reaction conditions, yields and melting points are listed in Table 1.

The structures of $\mathbf{3}$ and $\mathbf{4}$ were established by MS, IR, NMR and elemental analysis ${ }^{7}$. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3}$ and $\mathbf{4}$, the signals of two nitrogen protons ($8.57-9.40 \mathrm{ppm}$) and one ethylenic proton ($6.21-6.80 \mathrm{ppm}$) and the appearance of a new carbon signal (155.22-161.38 ppm) instead of a carbonyl carbon signal ($c a .180 \mathrm{ppm}$) indicate that Oglycosides were formed. The β linkage of the acetyl-protected glucopyranosyl group to heterocyclic ketene aminals was confirmed by the $\mathrm{H}_{1}-\mathrm{H}_{2}$ coupling constants (7.56-8.05 Hz) of the glucopyranosyl ring ${ }^{8}$. The Z-configuration of $\mathbf{4}$ was proved by the shift to
lower field of the ethylenic proton compared to the E-configuration of $\mathbf{3}$ due to the deshielding effect of the aryl goup ${ }^{5}$.

Scheme 1.

$\mathbf{1 , 3 , 4}$	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
Ar	α_{0}^{\prime}	\sim_{S}^{\prime}		

Table 1. Reaction conditions of $\mathbf{1}$ with $\mathbf{2}$, yields and melting points of compounds 3-4

	Reaction condition		Product	Yield ${ }^{\text {a }}(\%)$	Melting point $\left({ }^{\circ} \mathrm{C}\right)$
Method	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (d)			
A	30	1	$\mathbf{3 a}$	77	$72-74$
A	30	1	$\mathbf{3 b}$	69	$88-90$
A	30	1	$\mathbf{3 c}$	68	$66-68$
A	30	1	$\mathbf{3 d}$	82	$69-71$
B	30	5	$\mathbf{4 a}$	62	$76-78$
B	30	14	$\mathbf{4 b}$	42	$81-83$
B	30	4	$\mathbf{4 c}$	48	$79-81$
B	30	2	$\mathbf{4 d}$	75	$73-75$

${ }^{\text {a }}$ Isolated yield
A: $\mathrm{Hg}(\mathrm{CN})_{2}$ as catalyst in $\mathrm{CH}_{3} \mathrm{CN}$
B: CaH_{2} as catalyst in $\mathrm{CH}_{3} \mathrm{CN}$

Acknowledgments

This work was supported by the National Natural Science Foundation of China.

References and Notes

1. R. R. Schmidt, Angew Chem. Int. Ed. Engl., 1986, 25, 212.
2. R. U. Lemieux, Chem. Sec. Rev., 1986, 18, 3347.
3. Z. T. Huang and M. X. Wang, Heterocycles, 1994, 37, 1233.
4. Z. J. Li, L. B. Wang, and Z. T. Huang, Carbohydr. Res., 1996, 295, 77.
5. Z. X. Ren, L. B. Wang, Z. J. Li, Z. T. Huang, Carbohydr. Res., 1998, 309, 251.
6. Z. T. Huang and Z. R. Liu, Syth. Commum., 1989, 19, 943.
7. Spectroscopic data of some selected compounds:

3a IR: 3390, 1750, 1660, 1620; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 9.02(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 7.58-7.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.07-7.13 (m, 1H, Ar-H), 6.72 (s, 1H, C=CH), 6.53-6.59 (m, 1H, Ar-H), $5.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Glu}-\mathrm{H}_{1}\right.$, $\left.\left.\mathrm{J}_{\mathrm{H} 1, \mathrm{H} 2}=7.82 \mathrm{~Hz}\right), 5.36(\mathrm{t}, 1 \mathrm{H} \text {, Glu-H})_{2}\right), 5.04-5.24\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Glu- $\left.\mathrm{H}_{3}, \mathrm{H}_{4}\right), 3.92-4.32(\mathrm{~m}, 2 \mathrm{H}$, Glu$\mathrm{H}_{6}$), 3.65-3.78 (m, 1H, Glu-H5), $3.60\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.10,(\mathrm{~s}, 9 \mathrm{H}$, COCH_{3}), 2.02 (quin, $2 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 170.41,170.05,169.48,169.15,155.22$, $150.81,145.46,145.26,115.04,112.34,99.37,98.50,72.63,71.31,71.04,67.65,61.05,38.74$, 20.61, 20.45, 20.24, 20.23, 17.83; FAB-MS: $523(\mathrm{M}-\mathrm{Br})^{+}$.

Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{11}$: C, 47.77; H, 5.18; N, 4.64. Found: C, $47.52 ; \mathrm{H}, 5.20 ; \mathrm{N}, 4.54$. 4a IR: $3410,1750,1660,1622 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 9.25(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 7.58-7.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.05-7.10 (m, 1H, Ar-H), $6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.53-6.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Glu}_{1} \mathrm{H}_{1}\right.$, $\left.\mathrm{J}_{\mathrm{H} 1, \mathrm{H} 2}=8.05 \mathrm{~Hz}\right), 5.35\left(\mathrm{t}, 1 \mathrm{H}\right.$, Glu- H_{2}), 5.02-5.22 $\left(\mathrm{m}, 2 \mathrm{H}\right.$, Glu- $\left.\mathrm{H}_{3}, \mathrm{H}_{4}\right), 3.90-4.30(\mathrm{~m}, 2 \mathrm{H}$, Glu$\mathrm{H}_{6}$), 3.63-3.75 (m, $\left.1 \mathrm{H}, \mathrm{Glu}-\mathrm{H}_{5}\right), 3.57\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 2.20,2.02,2.01,2.00\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{COCH}_{3}\right)$, $1.95-2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 170.48,170.03,169.25,169.15,155.28$, $150.77,145.45,145.30,114.94,112.33,99.25,98.46,72.70,71.26,71.08,67.70,61.08,38.62$, 20.60, 20.43, 20.26, 20.25, 17.86; FAB-MS: $523(\mathrm{M}-\mathrm{Br})^{+}$.

Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{11}$: C, 47.77; H, 5.18; N, 4.64. Found: C, 47.19; H, 5.29; N, 4.51 .

3c IR: $3390,1750,1665,1625 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 9.17(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 8.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.84-$ $8.00(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.35-7.43(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.04\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Glu}_{1}-\mathrm{H}_{1}, \mathrm{~J}_{\mathrm{H} 1, \mathrm{H} 2}=\right.$ 8.31 Hz), $5.33\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Glu}-\mathrm{H}_{2}\right), 4.95-5.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Glu}-\mathrm{H}_{3}, \mathrm{H}_{4}\right), 3.72-4.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Glu}-\mathrm{H}_{6}\right), 3.62$ $\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 3.26-3.35\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Glu- $\left.\mathrm{H}_{5}\right), 2.20,2.08,2.02,1.98\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.01-2.10$ (m, 2H, C-CH $\left.\mathrm{CH}_{2}-\mathrm{C}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 171.66,170.16,169.65,169.31,159.13,155.63,150.48$, $148.34,138.05,124.97,124.75,102.34,96.64,72.41,71.51,71.30,68.05,61.21,38.94,20.99$, 20.62, 20.43, 20.42, 18.03; FAB-MS: 534 (M-Br) ${ }^{+}$.

Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BrN}_{3} \mathrm{O}_{10}$: C, 48.87; H, 5.25; N, 6.84. Found: C, 48.49; H, 5.52; N, 6.57.
4c IR: 3390, 1750, 1665, 1625; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 9.39(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 8.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.75-$ $7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.28-7.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 6.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Glu}^{2}-\mathrm{H}_{1}, \mathrm{~J}_{\mathrm{H} 1, \mathrm{H} 2}=\right.$ $8.20 \mathrm{~Hz}), 5.25\left(\mathrm{t}, 1 \mathrm{H}\right.$, Glu- H_{2}), 4.85-5.04 (m, 2 H, Glu- $\mathrm{H}_{3}, \mathrm{H}_{4}$), 3.60-3.95 (m, 2H, Glu-H H_{6}), 3.54 (t, $4 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}$), 3.17-3.27 (m, 1H, Glu-H5), 2.04, 1.98, 1.92, $1.85\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.90-2.00$ (m, 2H, C-CH $\left.\mathrm{CH}_{2}-\mathrm{C}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 171.61,169.99,169.52,169.20,158.97,155.56,150.44$, $148.32,137.83,124.88,124.29,102.04,95.52,72.32,71.47,71.15,67.93,61.12,38.66,20.88$, 20.46, 20.33, 20.30, 17.94. FAB-MS: $534(\mathrm{M}-\mathrm{Br})^{+}$.

Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BrN}_{3} \mathrm{O}_{10}$: C, 48.87 ; H, 5.25; N, 6.84. Found: C, $48.40 ; \mathrm{H}, 5.15 ; \mathrm{N}, 7.32$.
8. M. S. Cai and D. X. Qiu, Carbohydr. Res., 1989, 191, 125.

Received 26 March 1999

